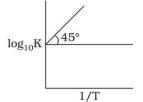


Date Planned ://	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :


153. Variation of $\log_{10} K$ with $\frac{1}{T}$ is shown by the following graph

in which straight line is at 45°C. Hence ΔH° is :

-19.147 kJ / mol

 $-4.606\,\mathrm{kJ}$ / mol

(D) 10 kJ / mol

Column I and Column II contains four entries each. Entries of Column-I are to be matched with some entries of Column-II. One or more than one entries of Column-I may have the matching with the same entries of Column-II.

(B)

154. Match the following :

(A)


Column I		Column II	
	(Reaction)	(If α is negligible w.r.t. 1)	
(A)	$2X(g) \rightleftharpoons Y(g) + Z(g)$	(P)	$\alpha = 2 \times \sqrt{K_c}$
(B)	$X(g) \rightleftharpoons Y(g) + Z(g)$	(Q)	$\alpha = 3 \times \sqrt{K_c}$
(C)	$3X(g) \rightleftharpoons Y(g) + Z(g)$	(R)	$\alpha = \left(2K_{c}\right)^{1/3}$
(D)	$2X(g) \rightleftharpoons Y(g) + 2Z(g)$	(S)	$\alpha = \sqrt{K_c}$

155. Match the following:

Column I		Column II	
(A)	$\frac{K_{10+T^{\circ}C}}{K_{T^{\circ}C}} = 2$	(P)	Endothermic
(B)	$\frac{K_{10+T^{\circ}C}}{K_{T^{\circ}C}} = \frac{1}{2}$	(Q)	Not affected by pressure
(C)	$A(g) + B(g) \rightleftharpoons C(g)$	(R)	Exothermic
(D)	$X(s) + Y(g) \rightleftharpoons Z(g)$	(S)	Affected by volume

156. Match the following :

Column I		Column II	
(A)	A) Pressure increased in $2NO(g) \rightleftharpoons N_2(g) + O_2(g)$ (P)	(D)	Equilibrium shifted in forward
(11)		(F)	direction
(B)	Pressure increased in	(Q)	Equilibrium shifted in backward
(1)	$CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$		direction
(C)	Temp. increased and pressure increased	(R)	Equilibrium remains unaffected
(0)	$3O_2(g) \rightleftharpoons 2O_3(g); \Delta H = 285 \text{ kJ}$		
	Pressure decrease and moles of N_2		
(D)	increase $N_2(g) + 2O_2(g) \rightleftharpoons 2NO_2(g)$;	(S)	Theoretically we cannot predict
	$\Delta H = 66.4 \text{ kJ}$		

- **157.** A reaction at equilibrium involving 2 mol each of PCl_5 , PCl_3 , Cl_2 is maintained at $250^{\circ}C$ and total pressure of 3 atm. Calculate the value of K_p .
- **158.** If β_1, β_2 and β_3 are stepwise formation constants of MCl, MCl₂, MCl₃ and K is the overall formation constant of MCl₃, then (charges omitted)
 - (A) $K = \beta_1 + \beta_2 + \beta_3$

- **(B)** $\frac{1}{K} = \frac{1}{\beta_1} + \frac{1}{\beta_2} + \frac{1}{\beta_3}$
- (C) $\log K = \log \beta_1 + \log \beta_2 + \log \beta_3$
- (D) $Pk = \log \beta_1 + \log \beta_2 + \log \beta_3 (Pk = -\log K)$